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Abstract—In this paper, I proposed a solution to generalize the 

sum of periodic binomial combination. Inspired by a classical 
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I.  INTRODUCTION  

Mathematical problems are fascinating. What looks as a time 
wasting simple question to some might actually be a source of 
knowledge to others. Sometimes, a math problem must involve 
a clever solution, it might even require a completely unexpected 
bridge to cross. Such as the following problem we will dive in 
involves a field of math that seems unrelated, but instead reveals 
deeper connection of fields that intertwine math as one. 

The following math problems is not an original one, in fact 
the non-general problem is considered a frequent one in math 
Olympiad. The writer had seen the simpler question on a local 
math Olympiad back when he was younger. A variation was also 
found from Canada Mathematical Olympiad 2006,  the national 
mathematical Olympiad for Canadian highschooler in selection 
for the IMO (International Math Olympiad).  Quoting from a 
handout by Math Olympiad medalist Evan Chen, the non-
generalized problem is a classic in math Olympiad world, which 
goes as the calculating following [1]. 

∑ (
1000

3𝑘
)

𝑘≥0

 

As you can see, the summation involves combination with a 
constant number of elements, which is 1000. The selection itself 
is periodic for every term, which is a multiple of 3. This question 
is quite interesting, and not too hard for a talented highschooler 
to solve in a math Olympiad. But, this paper will go to a further 
extent. The writer aims to solve the generalized version of above 
question, with no restrictions on the combination number of 

elements nor the modulo of selection. Thus, our new problem 
looks more or less like what follows. 

(
𝑁

𝑅
) + (

𝑁

𝑀 + 𝑅
) + (

𝑁

2𝑀 + 𝑅
) + ⋯ 

or in a simpler sigma notation 

 

∑ (
𝑁

𝑀𝐾 + 𝑅
)

𝑘≥0

 

Where N is a positive integer signifying the number of 
objects. The selection is a linear congruence MK+R which 
means it’s congruent to R modulo M. In other words, the 
selection must be periodic by M. Note that the summation might 
be very large. Thus, we will find the solution under a certain 
modulo, the prime 998244353 works well enough. 

For a computer science context, the following sum can be 
computed naively in a quite slow time complexity. However, 
using some advanced math knowledge we can simplify our 
problem first. In this paper, the writer will utilize Roots of Unity 
Filtering to achieve a simpler form of the problem. Then, the 
writer implements 2 divide and conquer algorithms, which is 
Number Theoretic Transform and Binary Exponentiation, to 
speed up the complex calculation. 

II. THEORETICAL BASIS 

A. Roots of Unity 

Roots of unity is a special type of number in the complex 
domain. Mind that complex number is in the form a+bi where a 
and b are both real numbers while i is the well known imaginary 
number. Complex number are usually visualized as point at the 
2 dimensional space of real numbers. Where the real line is a 
horizontal axis while the imaginary is vertical. Complex 
numbers also be formally written in it’s polar form  

𝑟(𝑐𝑜𝑠 𝑥 + 𝑖 𝑠𝑖𝑛 𝑥) = 𝑟𝑒𝑖𝑥 

              () 
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Where the right hand side is also known as euler’s formula. 
Also note that r is the distance of the point from origin (0,0) 
while x is the magnitude of the point from positive real line. 

The n-th roots of unity is defined as all complex z that 
satisfies 𝑧𝑛 = 1 [2]. It’s easy to notice that r must always be 1. 
Furthermore by using trigonometric properties 

𝑐𝑜𝑠(2π𝑝) + 𝑖 𝑠𝑖𝑛(2π𝑝) = 1 = 𝑧𝑛 

() 

𝑒
2πi𝑝

𝑛 = 𝑧 

() 

For all integer n, p<n. Geometrically, the n-th Roots of unity 
are n equally distanced point in the unit circle where one of the 
point is in (1,0) since z=1 is the trivial solution. 

 

Fig 2.1. Ninth roots of unity  

(Taken from kylem.net) 

B. Polynomial 

In this paper, we will use single variable polynomials only. 
This is an expression involving coefficients that’s in the form 

𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0 

() 

Where 𝑎𝑖 represents real coefficients for 0 ≤ 𝑖 <  𝑛. The 
above polynomial is said to have a degree n, which is the largest 
power among all terms. A polynomial can be evaluated by using 
any complex 𝑥 = 𝑥0, which returns 𝑃(𝑥0). Based on 
Vandermonde Form, we know that any (n+1) points uniquely 
define a degree n polynomial [3]. Thus, any polynomial can be 
represented in 2 ways. By a list of coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 or 
by list of values it evaluates 𝑃(x0), 𝑃(x1), … , 𝑃(xn). 

One of the most important operation for polynomials are 
multiplication. For 2 polynomials P(x) and Q(x), both having 
degree n, it’s multiplication denoted as (𝑃 ⋅ 𝑄)(𝑥) computed by 
convoluting both of their coefficients. This operation returns a 
degree 2n polynomial. The usual time complexity of this 
operation is 𝑂(𝑛2), but using algorithms such as Fast Fourier 
Transform or Number Theoretic Transform we can optimize 
polynomial multiplication into 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time. 

C. Divide and Conquer 

The Divide and Conquer is a problem solving strategy for 
designing efficient solution. This strategy is proven well to solve 
many problems in Computer Science, even for designing new 
optimized algorithms. The strategy relies on 3 phases, which is 

divide, conquer, and combine. For a small problem, we can 
usually conquer it directly without the need of recursive steps. 
This is usually called the base case. On the other hand, larger 
cases might need to be divided recursively until a small enough 
subproblem reached. 

After a problem divided to it’s subproblem, we must solve 
the subproblems independently. After such, we can finally 
combine both solution into one that solves the original. The 
recursion of Divide and Conquer usually described by an 
algorithmic recurrence T(n). It can be seen as the worst case 
running time of a Divide and Conquer algorithm of size n. From 
any recurrence T(n), with a driving method f(n) of complexity 
𝑂(𝑛𝑐), time complexity can be calculated using Master’s 
Theorem as follows 

𝑇(n) = 𝑎𝑇 (
n

b
) + 𝑓(n) 

() 

𝑇(𝑛) = {

Θ(𝑛log𝑏 𝑎), 𝑐 < log𝑏 𝑎

Θ(𝑛log𝑏 𝑎 log 𝑛), 𝑐 = log𝑏 𝑎
Θ(𝑓(𝑛)), 𝑐 > log𝑏 𝑎

 

() 

 

III. BINARY EXPONENTIATION & NTT 

The following 2 algorithms will be the backbone of the 
solution for our problem. Thus, the writer decided to touch on 
them with more detail below. Note that these 2 algorithms share 
a similarity of being an implementation of Divide & Conquer on 
it’s roots. Let’s consider each algorithm and their complexity. 

A. Binary Exponentiation 

Consider the problem of exponentiating a number or 
polynomial by a huge exponent. Naively multiplying the same 
thing over and over gives a O(nf(x)) time complexity for a power 
n and f(x) as the complexity of multiplying a same 2 instance. 
Let’s look at an optimization by divide and conquer. The main 
idea is to split the problem into 2 equal subproblem of smaller 

exponents. For instance we want to calculate 𝑎𝑏 with a and b 
integers (a can be a polynomial too). Notice that 

𝑎𝑏 = 𝑎
𝑏
2 ⋅ 𝑎

𝑏
2 

() 

If b is even, the division would be fair. But for b odd, the 
division would not be equal, thus a multiplication with a is 
needed 

ab = a
b−1

2 ⋅ a
b−1

2 ⋅ 𝑎 

() 

 
It’s easy to see that this division would be a recurring step. 

The base case on itself is quite trivial since a power of 1 is itself. 
Therefore we have a recurrence function as [4] 
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𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑓(𝑛) 

() 

Here f(n) denotes the combining process of subproblem 
solution, for integers its O(1) while for polynomial it’s O(n log 
n) using NTT. If we are dealing with integers, applying master’s 
theorem we have   𝑐 = log𝑏 𝑎 =  0. This concludes the 
complexity O(log n). On the other hand, for polynomial with 
degree d case we have 𝑐 >  1 =  log𝑏 𝑎 . Thus, we have 
𝑇(𝑛) = Θ(𝑑𝑙𝑜𝑔𝑑) , but since there are log n levels of recurrence 
calls the actual complexity is Θ(dlogdlogn). 

Remember that we are searching solution modulo 
998244353, so each step of multiplication must be accompanied 
with the modulo operation. To further optimize implementation, 
we may reduce function calls by doubling the power of a at 
every step while considering the binary representation of b. If 

the i-th digit of b is on then we calculate the result by 𝑎2𝑖
. 

Eventually we will reach the same solution and complexity. 

B. Number Theoretic Transform 

This variation of Fast Fourier Transform mostly differs at the 
field they operate. Number Theoretic Transform only works for 
integer, and calculated under a ring of modulo. Thus, NTT 
doesn’t use the traditional roots of unity. Instead, it acts under n-
th roots of unity in the modular arithmetic field 𝑍𝑝 where 𝑛 ∣
𝑝 − 1. NTT provides a more accurate calculation to FFT with 
modulo since it already operates on integer, but a bit slower due 
to many modulo operation needed. 

Let’s say we want to calculate P(x) with Q(x), both with 
degree n. The heart of this algorithm is evaluating n+1 values of 
complex numbers to the polynomial, which is 
𝑃(x0), 𝑃(x1), … , 𝑃(xn), in only O(n log n) time, this is NTT. 
After we have 𝑄(x0), 𝑄(x1), … , 𝑄(xn), we can calculate each 
corresponding integer value to get 𝑃Q(x0), 𝑃Q(x1), … , 𝑃Q(xn), 
in only O(n) time. After which we also figure out the values 
𝑃Q(-x0), 𝑃Q(-x1), … , 𝑃Q(-xn). Now that we have 2n points, we 
can interpolate these points to get the multiplied polynomial with 
degree 2n, the interpolation done with inverseNTT, a slight 
variation to NTT, and it’s also O(n log n) [5]. 

So how does this NTT algorithm actually works, and what 
does roots of unity do with it. To do NTT to P(x). The points that 
we use are the n-th root of unity, which is 𝜔, 𝜔2, 𝜔3, … . We 
must first divide P(x) into 2 polynomials with n/2 degrees, they 
are the odd and even coefficient polynoms. 

𝑃𝑒𝑣𝑒𝑛(𝑥) = 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + ⋯ 

        𝑃𝑜𝑑𝑑(𝑥) = 𝑎1𝑥 + 𝑎3𝑥3 + 𝑎5𝑥5 + ⋯ 

 

    Where 𝑃(𝑥) = 𝑃𝑒𝑣𝑒𝑛(𝑥2) + 𝑥𝑃𝑜𝑑𝑑(𝑥2). What we need right 

now is how to combine the values of NTT from 𝑃𝑒𝑣𝑒𝑛(𝑥) and 

𝑃odd(𝑥) to achieve NTT of P(x). 

    The first 
𝑛

2
 values are just an evaluation to the form above. 

𝑃(𝜔𝑘) = 𝑃𝑒𝑣𝑒𝑛(𝜔2k) + 𝜔𝑘𝑃𝑜𝑑𝑑(𝜔2k) 

And the next 
𝑛

2
 values are surprisingly simple due to roots of 

unity. 

𝑃(𝜔𝑘+𝑛/2) = 𝑃𝑒𝑣𝑒𝑛(𝜔2k)  − 𝜔𝑘𝑃𝑜𝑑𝑑(𝜔2k) 

Due to the similarity, the NTT can be easily determined. The 

recurrence is denoted by 

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑂(𝑛) 

By master’s theorem, this is O(n log n) time. The inverse of 

NTT is surprisingly simple too. The inverse is just the inverse 

of NTT Vandermonde matrix [3]. It can be proven that it’s in 

the form 
𝜔−𝑘𝑗

𝑛
 instead of NTT Vandermonde matrix’s 𝜔𝑘𝑗. 

Therefore, the inverse NTT is just the same as applying NTT 

again with a slight variation, and it’s complexity is similar. So, 

we can conclude that NTT in total have a complexity O(n log 

n) time. 

IV. MATHEMATICAL SOLUTION 

Calculating the sum of periodic binomials is quite heavy to 
do naively. To ease things up, we will utilize roots of unity to 
find a simplification to our problem. Restating what was said 
before, the main calculation is 

∑ (
𝑁

𝑀𝐾 + 𝑅
)

𝑘≥0

 𝑚𝑜𝑑 998244353   

 The choice of modulus is a large prime, reasons of why 
would be clear later. Let’s consider the first one of the M-th roots 

of unity, that is a single complex number ω such 𝜔 = 𝑒
2πi

𝑀 . But 
before we actually solve the problem there is a lemma regarding 
roots of unity that we need to address. 

A. Roots of unity sum lemma 

It will be proven that if an integer x is not divisible by M 

the following must hold 

1 + ω𝑥 + ω2𝑥 + ⋯ + ω(𝑀−1)𝑥 = 0 

() 

 

Start from the obvious fact that is ω𝑀𝑥 = 1. Factor out 

 (ω𝑥 − 1)(ω𝑥(𝑀−1) + ω𝑥(𝑀−2) + ⋯ + ω𝑥 + 1)  =  0 

() 

Notice either one of the 2 polynomial must be 0. But, if M 

doesn’t divide x there is no way  

 
ω𝑥 = 1 → ω𝑥 − 1 = 0 

() 

Thus, in this case the equality must hold and lemma is proven. 

 

B. Generating Function 

A certain generating function would be used to solve this 
problem. Let 𝑓(𝑥) = (𝑥 + 1)𝑛 for any complex x. By expanding 
the binomial coefficient we have 

𝑓(𝑥) = (
𝑁

0
) + (

𝑁

1
) 𝑥 + (

𝑁

2
) 𝑥2 + ⋯ + (

𝑁

𝑁
) 𝑥𝑁 

() 
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It’s trivial that for x=1 we have 

2𝑛 = 𝑓(1) = (
𝑁

0
) + (

𝑁

1
) + ⋯ + (

𝑁

𝑁
) 

() 

We also define another function S(R) where 

𝑆(𝑅) = ∑ (
𝑁

𝑀𝑘 + 𝑅
)

𝑘=0

 

() 

C. Roots of unity Filter 

What we want to calculate is actually S(R). First, let’s search 
for a simpler form of S(0). Notice and clarify the following  

𝑓(ω𝑘) = (ω𝑘 + 1)𝑛 = ∑ (
𝑁

𝑖
) ω𝑘𝑖

𝑖<𝑁

 

𝑓(ω𝑘) = ∑ 𝑆(𝑖)ω𝑘𝑖

𝑀−1

𝑖=0

 

() 

 The key is to sum over all from k equals 0 to M-1 

∑ 𝑓(ω𝑗)

𝑀−1

𝑗=0

= ∑ ∑ 𝑆(𝑖)ω𝑗𝑖

𝑀−1

𝑖=0

𝑀−1

𝑗=0

 

() 

 Switch the order of sigma summation into 

∑ 𝑓(𝜔𝑗)

𝑀−1

𝑗=0

= ∑ ∑ 𝑆(𝑖)𝜔𝑗𝑖

𝑀−1

𝑗=0

𝑀−1

𝑖=0

 

() 

This is where we apply our lemma. Since every sum of roots 
of unity where the power is not divisible by M leads to 0, all 
terms with i not divisible by M are filtered. Thus, only terms 
with i=0 persists. Therefore we are left with 

∑ 𝑓(𝜔𝑗)

𝑀−1

𝑗=0

= ∑ 𝑆(0) = 𝑀 ⋅ 𝑆(0)

𝑀−1

𝑗=0

 

() 

And this concludes our search for a simpler equation of S(0). 

D. Simplified Form 

We just found out that 

𝑆(0) =
2𝑁 + (ω + 1)𝑁 + (ω2 + 1)𝑁 + ⋯ + (ω𝑀−1 + 1)𝑁

𝑀
 

() 

Now what about S(R)? We need to make sure that during the 
summation of roots of unity, only the term i=R persists. This can 

be done by multiplying ω(𝑀−𝑅)𝑘 for every 𝑓(ω𝑘). Thus, for a 
general R our simplified S(R) is 

2𝑁 + (𝜔 + 1)𝑁ω𝑀−𝑅 + ⋯ + (𝜔𝑀−1 + 1)𝑁ω(𝑀−𝑅)(𝑀−1)

𝑀
 

() 

V. IMPLEMENTATION 

Since the problem is simplified already, we are ready to 
implement it as a code. Firstly, note that we are not actually 
using the roots of unity as a complex number. The main reason 
is due to the amount of modulo operation we must do, the use of 
complex numbers might lead to unwanted inaccuracy. So 
instead, we are using n-th root of unity under primitive field p 

where a ω satisfies ω𝑛  ≡ 1 𝑚𝑜𝑑 𝑝 but 𝜔𝑘  ≢ 1 𝑚𝑜𝑑 𝑝 for all 
k<n. Since we use modulus 998244353 we pick ω=3 since the 
order of 3 modulo 998244353 is exactly 998244352 as we 
wanted.  

To handle the actual properties of 𝜔𝑀 applies under modulo 
998244353, we must make sure M is less than that prime so the 
roots of unity always exist. Notice that the property of the lemma 
is no longer true for this root, although it is crucial. Thus, we will 
do it manually by utilizing 

1 + 𝜔 + 𝜔2 + ⋯ + 𝜔(𝑀−1) = 0 
Every coefficient on the polynomial of interest must be reduced 
by the minimum coefficient. Same as for the property of ω𝑀 =
1 we can handle it by reducing every polynomial of interests into 
a degree M-1 polynomial with the coefficient accumulated. This 
way, we won’t ever actually have a polynomial larger than 
degree M-1. This will speed up our NTT and Polynomial 
Exponentiation significantly. 

 The Writer implemented this algorithm using C++. The 
choice of language is for speed optimalization since this 
language is known for effectiveness. Further details about the 
implementation can be seen on the following Github repository. 
The polynomial is implemented as an object which defined as 

https://github.com/Farhannr28/Generalizing-Sum-of-Periodic-Binomial-Combination
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Fig 5.1. Polynomial Object Definition 

 

 As explained before, since we are using integer roots over a 
primitive field we must manipulate the properties of ω such it 
behave like the roots of M. This is done manually by 2 
procedures. reduceDegree() will accumulate all coefficients 
with the same power modulo M such the resulting polynomial 
degree never exceeds M-1. While the procedure 
reducePolynom() will utilize the lemma to make sure the 
coefficients are minimized. Their implementation is provided in 
the snippet below  

 

 

 

Fig 5.2. Snippet of Polynomial procedures 

 

  The algorithms are not that hard to implement either. Here is 
the code snippet for Binary Exponentiation 

 

Fig 5.3. Polynomial Exponentiation Implementation  

 

 

Fig 5.4. Integer Exponentiation Implementation  

 

 See that the algorithms is almost exact for both polynomial 
and integers. As it was said before, this code optimizes the 
explained implementation by using iterative approach instead of 
recurrence one. This is done by exploiting the binary of the 
exponent to decide what should be multiplied next. The 
multiplication for Polynomial uses Number Theoretic 
Transform which is implemented as the following 
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void NumberTheoreticTransform::ntt(vector<int>& a, int n, int root) { 

    if (n == 1) return; 

    vector<int> even(n / 2), odd(n / 2); 

    for (int i = 0; i < n / 2; ++i) { 

        even[i] = a[2 * i]; 

        odd[i] = a[2 * i + 1]; 

    } 

 

    NumberTheoreticTransform::ntt(even, n / 2, root); 

    NumberTheoreticTransform::ntt(odd, n / 2, root); 

 

    int wlen = 

Exponentiation<int>::getInstance().BinaryExponentiation(root, (MOD - 

1) / n, MOD); 

    int w = 1; 

 

    for (int i = 0; i < n / 2; ++i) { 

        a[i] = (even[i] + 1LL * w * odd[i] % MOD) % MOD; 

        a[i + n / 2] = (even[i] - 1LL * w * odd[i] % MOD + MOD) % MOD; 

        w = 1LL * w * wlen % MOD; 

    } 

    return; 

} 

 

void NumberTheoreticTransform::ntt_inverse(vector<int>& a, int n) { 

    ntt(a, n, 

Exponentiation<int>::getInstance().BinaryExponentiation(ROOT, MOD - 2, 

MOD)); 

    int inv_n = 

Exponentiation<int>::getInstance().BinaryExponentiation(n, MOD - 2, 

MOD); 

    for (int i = 0; i < n; ++i) { 

        a[i] = 1LL * a[i] * inv_n % MOD; 

    } 

    return; 

} 

 

Polynomial NumberTheoreticTransform::multiply(Polynomial a, Polynomial 

b) { 

    int n = 1; 

    while (n < a.getDegree() + b.getDegree() + 1) { 

        n <<= 1; 

    } 

    a.getCoefficients().resize(n); 

    b.getCoefficients().resize(n); 

    NumberTheoreticTransform::ntt(a.getCoefficients(), n, ROOT); 

    NumberTheoreticTransform::ntt(b.getCoefficients(), n, ROOT); 

    vector<int> c(n); 

    for (int i = 0; i < n; ++i) { 

        c[i] = 1LL * a.getCoefficients()[i] * b.getCoefficients()[i] % 

MOD; 

    } 

    NumberTheoreticTransform::ntt_inverse(c, n); 

    Polynomial res(n-2); 

    res.setCoefficients(c); 

    res.reduceDegree(m); 

    res.reducePolynom(m); 

    return res; 

} 
Fig 5.5. Number Theoretic Transform Implementation  

 

 As you can see the procedure reduceDegree() and 
reducePolynom() are called after each NTT multiplication. This 
way every resulting polynomial is minimized degree wise and 
the next NTT will be significantly faster. Finally to piece 
everything together, there is a Solver object that utilizes all the 
algorithms above to calculate the answer like the simplified form 
we discovered before. 

int Solver::Calculate(int N, int M, int R){ 

    if (R==0){ 

        R = M; 

    } 

    NumberTheoreticTransform::getInstance().setM(M); 

    int C = Exponentiation<int>::getInstance().BinaryExponentiation(2, 

N, MOD); 

    Polynomial result(M-1); 

    Polynomial temp(0); 

    Polynomial expo(M-1); 

    temp.getCoefficients()[0] = 1; 

    temp.getCoefficients().push_back(1); 

    expo = 

Exponentiation<Polynomial>::getInstance().BinaryExponentiation(temp, 

N); 

    for (int j=0; j<M; j++){ 

        result.getCoefficients()[(j + M - R) % M] += 

expo.getCoefficients()[j]; 

    } 

    for (int i=2; i<M; i++){ 

        temp.getCoefficients().push_back(1); 

        temp.getCoefficients()[i-1] = 0; 

        expo = 

Exponentiation<Polynomial>::getInstance().BinaryExponentiation(temp, 

N); 

        for (int j=0; j<M; j++){ 

            result.getCoefficients()[(j + (i * (M-R))) % M] += 

expo.getCoefficients()[j]; 

        } 

    } 



Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024 

 

 

    result.getCoefficients()[0] = (C + result.getCoefficients()[0]) % 

MOD; 

 

    result.reducePolynom(M); 

 

    // Theoretically only X_0 persists, if so Divide by M, otherwise 

report possible error 

 

    int k = 1; 

    while (k < M && result.getCoefficients()[k] == 0){ 

        k++; 

    } 

    int answer = result.getCoefficients()[0]; 

    answer = (answer * Exponentiation<int>::getInstance().inverse(M, 

MOD)) % MOD; 

    if (k == M){ 

        // Show Answer, as a positive 

        return answer; 

    } else { 

        // Report, as a negative 

        return answer * -1; 

    } 

} 
Fig 5.6. Answer Calculation Implementation  

 To calculate S(R), the multiplication with 𝜔(𝑀−𝑅)𝑘  is 
handled with indexing [(j + (i * (M-R))) % M] which exploits 
the cyclic nature of powers with ω𝑀 = 1. Pay attention to the 
final reducePolynom() call. At that point we are at the final 
calculated polynomial. Theoretically, every coefficient of ω at 
that polynomial will be equal. Thus, we can reduce it one last 
time and ended up with a single integer, which divided by M is 
our answer. But in reality, sometimes the coefficient are not all 
equal, which gives doubt to the final answer since a root of unity 
persists in the answer while it’s a complex number. This is why 
the writer notifies the user of a probably miscalculation if such 
thing happens. 

 Finally we must make sure that the division by M is correct 
under modulo. By Fermat’s little Theorem, we have 

𝑀−1  ≡  𝑀𝑝−2 𝑚𝑜𝑑 𝑝 

This is why choosing 998244353 as our modulus gave an 
advantage. Since selecting composite modulus complicates us 
by needing Chinese Remainder Theorem to calculate inverse. In 
the above code, the inverse is just 

3998244351𝑚𝑜𝑑 998244353 

Which can be calculated in O(log n) time using Binary 
Exponentiation. 

 

VI. ANALYSIS 

The program runs pretty quick with ability to calculate up to 
N = 100000. Above that the programs seems to run out of 
memory and thus cannot continue the calculation. For N=10000, 
by average the solution found in about a minute. Based on the 
algorithms time complexity, the total complexity of the program 
should be 𝑂(𝑚2𝑙𝑜𝑔𝑚 𝑙𝑜𝑔𝑛). Which isn’t quite reflected by the 
reality. Truth is, the program could be way slower do to the 
heavy computations of the modulo. 

The main problem of the program currently is the low of 
accuracy. The case where root coefficient not equal is highly 
probably. The program also works very well for small N but 
once it reaches the thousands it tends to gave a wrong answer 
even when no indication reported. One such case is for 

∑ (
1000

3𝑘
)

𝑘≥0

 

Where in the reference mentioned before the solution 

is 
21000−1

3
 which should’ve been 7742092 in modulo 998244353. 

Yet the program returns 965982950 

 

Fig 6.1. Classical Test Case   

This is far from the solution and instead was closer to the modulo 
998244353 instead. There’s a high probability that an integer 
overflow happened and not handled yet, which explains most of 
the error. 

VII. CONCLUSION 

In conclusion, the program written by the author is not 
perfect. There is still a huge room for improvement on the 
implementation side. But, it still proves that the problem can be 
generalized using Number Theoretic Transform and Binary 
Exponentiation. Plus, utilizing roots of unity a simpler form can 
be achieved. Anyway, the author is still grateful of the 
knowledge achieved while working on this paper.  
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