
Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Application of Number Theoretic Transform and

Binary Exponentiation for Generalizing Sum of

Periodic Binomial Combination

Farhan Nafis Rayhan - 13522037

Program Studi Teknik Informatika

Sekolah Teknik Elektro dan Informatika

Institut Teknologi Bandung, Jalan Ganesha 10 Bandung

E-mail (gmail): farhannafis281004@gmail.com

Abstract—In this paper, I proposed a solution to generalize the

sum of periodic binomial combination. Inspired by a classical

math olympiad problem, a challenge arise to find a general

solution. The writer utilizes Number Theoretic Transform and

Binary Exponentiation to design an efficient algorithm to solve it.

While advanced math knowledge, especially Roots of Unity, also

took part in the calculation.

Keywords—Number Theoretic Transform, Binary

Exponentiation, Periodic Combination Sum, Roots of Unity, Divide

and Conquer

I. INTRODUCTION

Mathematical problems are fascinating. What looks as a time
wasting simple question to some might actually be a source of
knowledge to others. Sometimes, a math problem must involve
a clever solution, it might even require a completely unexpected
bridge to cross. Such as the following problem we will dive in
involves a field of math that seems unrelated, but instead reveals
deeper connection of fields that intertwine math as one.

The following math problems is not an original one, in fact
the non-general problem is considered a frequent one in math
Olympiad. The writer had seen the simpler question on a local
math Olympiad back when he was younger. A variation was also
found from Canada Mathematical Olympiad 2006, the national
mathematical Olympiad for Canadian highschooler in selection
for the IMO (International Math Olympiad). Quoting from a
handout by Math Olympiad medalist Evan Chen, the non-
generalized problem is a classic in math Olympiad world, which
goes as the calculating following [1].

∑ (
1000

3𝑘
)

𝑘≥0

As you can see, the summation involves combination with a
constant number of elements, which is 1000. The selection itself
is periodic for every term, which is a multiple of 3. This question
is quite interesting, and not too hard for a talented highschooler
to solve in a math Olympiad. But, this paper will go to a further
extent. The writer aims to solve the generalized version of above
question, with no restrictions on the combination number of

elements nor the modulo of selection. Thus, our new problem
looks more or less like what follows.

(
𝑁

𝑅
) + (

𝑁

𝑀 + 𝑅
) + (

𝑁

2𝑀 + 𝑅
) + ⋯

or in a simpler sigma notation

∑ (
𝑁

𝑀𝐾 + 𝑅
)

𝑘≥0

Where N is a positive integer signifying the number of
objects. The selection is a linear congruence MK+R which
means it’s congruent to R modulo M. In other words, the
selection must be periodic by M. Note that the summation might
be very large. Thus, we will find the solution under a certain
modulo, the prime 998244353 works well enough.

For a computer science context, the following sum can be
computed naively in a quite slow time complexity. However,
using some advanced math knowledge we can simplify our
problem first. In this paper, the writer will utilize Roots of Unity
Filtering to achieve a simpler form of the problem. Then, the
writer implements 2 divide and conquer algorithms, which is
Number Theoretic Transform and Binary Exponentiation, to
speed up the complex calculation.

II. THEORETICAL BASIS

A. Roots of Unity

Roots of unity is a special type of number in the complex
domain. Mind that complex number is in the form a+bi where a
and b are both real numbers while i is the well known imaginary
number. Complex number are usually visualized as point at the
2 dimensional space of real numbers. Where the real line is a
horizontal axis while the imaginary is vertical. Complex
numbers also be formally written in it’s polar form

𝑟(𝑐𝑜𝑠 𝑥 + 𝑖 𝑠𝑖𝑛 𝑥) = 𝑟𝑒𝑖𝑥

 ()

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Where the right hand side is also known as euler’s formula.
Also note that r is the distance of the point from origin (0,0)
while x is the magnitude of the point from positive real line.

The n-th roots of unity is defined as all complex z that
satisfies 𝑧𝑛 = 1 [2]. It’s easy to notice that r must always be 1.
Furthermore by using trigonometric properties

𝑐𝑜𝑠(2π𝑝) + 𝑖 𝑠𝑖𝑛(2π𝑝) = 1 = 𝑧𝑛

()

𝑒
2πi𝑝

𝑛 = 𝑧

()

For all integer n, p<n. Geometrically, the n-th Roots of unity
are n equally distanced point in the unit circle where one of the
point is in (1,0) since z=1 is the trivial solution.

Fig 2.1. Ninth roots of unity

(Taken from kylem.net)

B. Polynomial

In this paper, we will use single variable polynomials only.
This is an expression involving coefficients that’s in the form

𝑃(𝑥) = 𝑎𝑛𝑥𝑛 + 𝑎𝑛−1𝑥𝑛−1 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0

()

Where 𝑎𝑖 represents real coefficients for 0 ≤ 𝑖 < 𝑛. The
above polynomial is said to have a degree n, which is the largest
power among all terms. A polynomial can be evaluated by using
any complex 𝑥 = 𝑥0, which returns 𝑃(𝑥0). Based on
Vandermonde Form, we know that any (n+1) points uniquely
define a degree n polynomial [3]. Thus, any polynomial can be
represented in 2 ways. By a list of coefficients 𝑎0, 𝑎1, … , 𝑎𝑛 or
by list of values it evaluates 𝑃(x0), 𝑃(x1), … , 𝑃(xn).

One of the most important operation for polynomials are
multiplication. For 2 polynomials P(x) and Q(x), both having
degree n, it’s multiplication denoted as (𝑃 ⋅ 𝑄)(𝑥) computed by
convoluting both of their coefficients. This operation returns a
degree 2n polynomial. The usual time complexity of this
operation is 𝑂(𝑛2), but using algorithms such as Fast Fourier
Transform or Number Theoretic Transform we can optimize
polynomial multiplication into 𝑂(𝑛 𝑙𝑜𝑔 𝑛) time.

C. Divide and Conquer

The Divide and Conquer is a problem solving strategy for
designing efficient solution. This strategy is proven well to solve
many problems in Computer Science, even for designing new
optimized algorithms. The strategy relies on 3 phases, which is

divide, conquer, and combine. For a small problem, we can
usually conquer it directly without the need of recursive steps.
This is usually called the base case. On the other hand, larger
cases might need to be divided recursively until a small enough
subproblem reached.

After a problem divided to it’s subproblem, we must solve
the subproblems independently. After such, we can finally
combine both solution into one that solves the original. The
recursion of Divide and Conquer usually described by an
algorithmic recurrence T(n). It can be seen as the worst case
running time of a Divide and Conquer algorithm of size n. From
any recurrence T(n), with a driving method f(n) of complexity
𝑂(𝑛𝑐), time complexity can be calculated using Master’s
Theorem as follows

𝑇(n) = 𝑎𝑇 (
n

b
) + 𝑓(n)

()

𝑇(𝑛) = {

Θ(𝑛log𝑏 𝑎), 𝑐 < log𝑏 𝑎

Θ(𝑛log𝑏 𝑎 log 𝑛), 𝑐 = log𝑏 𝑎
Θ(𝑓(𝑛)), 𝑐 > log𝑏 𝑎

()

III. BINARY EXPONENTIATION & NTT

The following 2 algorithms will be the backbone of the
solution for our problem. Thus, the writer decided to touch on
them with more detail below. Note that these 2 algorithms share
a similarity of being an implementation of Divide & Conquer on
it’s roots. Let’s consider each algorithm and their complexity.

A. Binary Exponentiation

Consider the problem of exponentiating a number or
polynomial by a huge exponent. Naively multiplying the same
thing over and over gives a O(nf(x)) time complexity for a power
n and f(x) as the complexity of multiplying a same 2 instance.
Let’s look at an optimization by divide and conquer. The main
idea is to split the problem into 2 equal subproblem of smaller

exponents. For instance we want to calculate 𝑎𝑏 with a and b
integers (a can be a polynomial too). Notice that

𝑎𝑏 = 𝑎
𝑏
2 ⋅ 𝑎

𝑏
2

()

If b is even, the division would be fair. But for b odd, the
division would not be equal, thus a multiplication with a is
needed

ab = a
b−1

2 ⋅ a
b−1

2 ⋅ 𝑎

()

It’s easy to see that this division would be a recurring step.

The base case on itself is quite trivial since a power of 1 is itself.
Therefore we have a recurrence function as [4]

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

𝑇(𝑛) = 𝑇 (
𝑛

2
) + 𝑓(𝑛)

()

Here f(n) denotes the combining process of subproblem
solution, for integers its O(1) while for polynomial it’s O(n log
n) using NTT. If we are dealing with integers, applying master’s
theorem we have 𝑐 = log𝑏 𝑎 = 0. This concludes the
complexity O(log n). On the other hand, for polynomial with
degree d case we have 𝑐 > 1 = log𝑏 𝑎 . Thus, we have
𝑇(𝑛) = Θ(𝑑𝑙𝑜𝑔𝑑) , but since there are log n levels of recurrence
calls the actual complexity is Θ(dlogdlogn).

Remember that we are searching solution modulo
998244353, so each step of multiplication must be accompanied
with the modulo operation. To further optimize implementation,
we may reduce function calls by doubling the power of a at
every step while considering the binary representation of b. If

the i-th digit of b is on then we calculate the result by 𝑎2𝑖
.

Eventually we will reach the same solution and complexity.

B. Number Theoretic Transform

This variation of Fast Fourier Transform mostly differs at the
field they operate. Number Theoretic Transform only works for
integer, and calculated under a ring of modulo. Thus, NTT
doesn’t use the traditional roots of unity. Instead, it acts under n-
th roots of unity in the modular arithmetic field 𝑍𝑝 where 𝑛 ∣
𝑝 − 1. NTT provides a more accurate calculation to FFT with
modulo since it already operates on integer, but a bit slower due
to many modulo operation needed.

Let’s say we want to calculate P(x) with Q(x), both with
degree n. The heart of this algorithm is evaluating n+1 values of
complex numbers to the polynomial, which is
𝑃(x0), 𝑃(x1), … , 𝑃(xn), in only O(n log n) time, this is NTT.
After we have 𝑄(x0), 𝑄(x1), … , 𝑄(xn), we can calculate each
corresponding integer value to get 𝑃Q(x0), 𝑃Q(x1), … , 𝑃Q(xn),
in only O(n) time. After which we also figure out the values
𝑃Q(-x0), 𝑃Q(-x1), … , 𝑃Q(-xn). Now that we have 2n points, we
can interpolate these points to get the multiplied polynomial with
degree 2n, the interpolation done with inverseNTT, a slight
variation to NTT, and it’s also O(n log n) [5].

So how does this NTT algorithm actually works, and what
does roots of unity do with it. To do NTT to P(x). The points that
we use are the n-th root of unity, which is 𝜔, 𝜔2, 𝜔3, … . We
must first divide P(x) into 2 polynomials with n/2 degrees, they
are the odd and even coefficient polynoms.

𝑃𝑒𝑣𝑒𝑛(𝑥) = 𝑎0 + 𝑎2𝑥2 + 𝑎4𝑥4 + ⋯

 𝑃𝑜𝑑𝑑(𝑥) = 𝑎1𝑥 + 𝑎3𝑥3 + 𝑎5𝑥5 + ⋯

 Where 𝑃(𝑥) = 𝑃𝑒𝑣𝑒𝑛(𝑥2) + 𝑥𝑃𝑜𝑑𝑑(𝑥2). What we need right

now is how to combine the values of NTT from 𝑃𝑒𝑣𝑒𝑛(𝑥) and

𝑃odd(𝑥) to achieve NTT of P(x).

 The first
𝑛

2
 values are just an evaluation to the form above.

𝑃(𝜔𝑘) = 𝑃𝑒𝑣𝑒𝑛(𝜔2k) + 𝜔𝑘𝑃𝑜𝑑𝑑(𝜔2k)

And the next
𝑛

2
 values are surprisingly simple due to roots of

unity.

𝑃(𝜔𝑘+𝑛/2) = 𝑃𝑒𝑣𝑒𝑛(𝜔2k) − 𝜔𝑘𝑃𝑜𝑑𝑑(𝜔2k)

Due to the similarity, the NTT can be easily determined. The

recurrence is denoted by

𝑇(𝑛) = 2𝑇 (
𝑛

2
) + 𝑂(𝑛)

By master’s theorem, this is O(n log n) time. The inverse of

NTT is surprisingly simple too. The inverse is just the inverse

of NTT Vandermonde matrix [3]. It can be proven that it’s in

the form
𝜔−𝑘𝑗

𝑛
 instead of NTT Vandermonde matrix’s 𝜔𝑘𝑗.

Therefore, the inverse NTT is just the same as applying NTT

again with a slight variation, and it’s complexity is similar. So,

we can conclude that NTT in total have a complexity O(n log

n) time.

IV. MATHEMATICAL SOLUTION

Calculating the sum of periodic binomials is quite heavy to
do naively. To ease things up, we will utilize roots of unity to
find a simplification to our problem. Restating what was said
before, the main calculation is

∑ (
𝑁

𝑀𝐾 + 𝑅
)

𝑘≥0

 𝑚𝑜𝑑 998244353

 The choice of modulus is a large prime, reasons of why
would be clear later. Let’s consider the first one of the M-th roots

of unity, that is a single complex number ω such 𝜔 = 𝑒
2πi

𝑀 . But
before we actually solve the problem there is a lemma regarding
roots of unity that we need to address.

A. Roots of unity sum lemma

It will be proven that if an integer x is not divisible by M

the following must hold

1 + ω𝑥 + ω2𝑥 + ⋯ + ω(𝑀−1)𝑥 = 0

()

Start from the obvious fact that is ω𝑀𝑥 = 1. Factor out

 (ω𝑥 − 1)(ω𝑥(𝑀−1) + ω𝑥(𝑀−2) + ⋯ + ω𝑥 + 1) = 0

()

Notice either one of the 2 polynomial must be 0. But, if M

doesn’t divide x there is no way

ω𝑥 = 1 → ω𝑥 − 1 = 0

()

Thus, in this case the equality must hold and lemma is proven.

B. Generating Function

A certain generating function would be used to solve this
problem. Let 𝑓(𝑥) = (𝑥 + 1)𝑛 for any complex x. By expanding
the binomial coefficient we have

𝑓(𝑥) = (
𝑁

0
) + (

𝑁

1
) 𝑥 + (

𝑁

2
) 𝑥2 + ⋯ + (

𝑁

𝑁
) 𝑥𝑁

()

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

It’s trivial that for x=1 we have

2𝑛 = 𝑓(1) = (
𝑁

0
) + (

𝑁

1
) + ⋯ + (

𝑁

𝑁
)

()

We also define another function S(R) where

𝑆(𝑅) = ∑ (
𝑁

𝑀𝑘 + 𝑅
)

𝑘=0

()

C. Roots of unity Filter

What we want to calculate is actually S(R). First, let’s search
for a simpler form of S(0). Notice and clarify the following

𝑓(ω𝑘) = (ω𝑘 + 1)𝑛 = ∑ (
𝑁

𝑖
) ω𝑘𝑖

𝑖<𝑁

𝑓(ω𝑘) = ∑ 𝑆(𝑖)ω𝑘𝑖

𝑀−1

𝑖=0

()

 The key is to sum over all from k equals 0 to M-1

∑ 𝑓(ω𝑗)

𝑀−1

𝑗=0

= ∑ ∑ 𝑆(𝑖)ω𝑗𝑖

𝑀−1

𝑖=0

𝑀−1

𝑗=0

()

 Switch the order of sigma summation into

∑ 𝑓(𝜔𝑗)

𝑀−1

𝑗=0

= ∑ ∑ 𝑆(𝑖)𝜔𝑗𝑖

𝑀−1

𝑗=0

𝑀−1

𝑖=0

()

This is where we apply our lemma. Since every sum of roots
of unity where the power is not divisible by M leads to 0, all
terms with i not divisible by M are filtered. Thus, only terms
with i=0 persists. Therefore we are left with

∑ 𝑓(𝜔𝑗)

𝑀−1

𝑗=0

= ∑ 𝑆(0) = 𝑀 ⋅ 𝑆(0)

𝑀−1

𝑗=0

()

And this concludes our search for a simpler equation of S(0).

D. Simplified Form

We just found out that

𝑆(0) =
2𝑁 + (ω + 1)𝑁 + (ω2 + 1)𝑁 + ⋯ + (ω𝑀−1 + 1)𝑁

𝑀

()

Now what about S(R)? We need to make sure that during the
summation of roots of unity, only the term i=R persists. This can

be done by multiplying ω(𝑀−𝑅)𝑘 for every 𝑓(ω𝑘). Thus, for a
general R our simplified S(R) is

2𝑁 + (𝜔 + 1)𝑁ω𝑀−𝑅 + ⋯ + (𝜔𝑀−1 + 1)𝑁ω(𝑀−𝑅)(𝑀−1)

𝑀

()

V. IMPLEMENTATION

Since the problem is simplified already, we are ready to
implement it as a code. Firstly, note that we are not actually
using the roots of unity as a complex number. The main reason
is due to the amount of modulo operation we must do, the use of
complex numbers might lead to unwanted inaccuracy. So
instead, we are using n-th root of unity under primitive field p

where a ω satisfies ω𝑛 ≡ 1 𝑚𝑜𝑑 𝑝 but 𝜔𝑘 ≢ 1 𝑚𝑜𝑑 𝑝 for all
k<n. Since we use modulus 998244353 we pick ω=3 since the
order of 3 modulo 998244353 is exactly 998244352 as we
wanted.

To handle the actual properties of 𝜔𝑀 applies under modulo
998244353, we must make sure M is less than that prime so the
roots of unity always exist. Notice that the property of the lemma
is no longer true for this root, although it is crucial. Thus, we will
do it manually by utilizing

1 + 𝜔 + 𝜔2 + ⋯ + 𝜔(𝑀−1) = 0
Every coefficient on the polynomial of interest must be reduced
by the minimum coefficient. Same as for the property of ω𝑀 =
1 we can handle it by reducing every polynomial of interests into
a degree M-1 polynomial with the coefficient accumulated. This
way, we won’t ever actually have a polynomial larger than
degree M-1. This will speed up our NTT and Polynomial
Exponentiation significantly.

 The Writer implemented this algorithm using C++. The
choice of language is for speed optimalization since this
language is known for effectiveness. Further details about the
implementation can be seen on the following Github repository.
The polynomial is implemented as an object which defined as

https://github.com/Farhannr28/Generalizing-Sum-of-Periodic-Binomial-Combination

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

Fig 5.1. Polynomial Object Definition

 As explained before, since we are using integer roots over a
primitive field we must manipulate the properties of ω such it
behave like the roots of M. This is done manually by 2
procedures. reduceDegree() will accumulate all coefficients
with the same power modulo M such the resulting polynomial
degree never exceeds M-1. While the procedure
reducePolynom() will utilize the lemma to make sure the
coefficients are minimized. Their implementation is provided in
the snippet below

Fig 5.2. Snippet of Polynomial procedures

 The algorithms are not that hard to implement either. Here is
the code snippet for Binary Exponentiation

Fig 5.3. Polynomial Exponentiation Implementation

Fig 5.4. Integer Exponentiation Implementation

 See that the algorithms is almost exact for both polynomial
and integers. As it was said before, this code optimizes the
explained implementation by using iterative approach instead of
recurrence one. This is done by exploiting the binary of the
exponent to decide what should be multiplied next. The
multiplication for Polynomial uses Number Theoretic
Transform which is implemented as the following

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

void NumberTheoreticTransform::ntt(vector<int>& a, int n, int root) {

 if (n == 1) return;

 vector<int> even(n / 2), odd(n / 2);

 for (int i = 0; i < n / 2; ++i) {

 even[i] = a[2 * i];

 odd[i] = a[2 * i + 1];

 }

 NumberTheoreticTransform::ntt(even, n / 2, root);

 NumberTheoreticTransform::ntt(odd, n / 2, root);

 int wlen =

Exponentiation<int>::getInstance().BinaryExponentiation(root, (MOD -

1) / n, MOD);

 int w = 1;

 for (int i = 0; i < n / 2; ++i) {

 a[i] = (even[i] + 1LL * w * odd[i] % MOD) % MOD;

 a[i + n / 2] = (even[i] - 1LL * w * odd[i] % MOD + MOD) % MOD;

 w = 1LL * w * wlen % MOD;

 }

 return;

}

void NumberTheoreticTransform::ntt_inverse(vector<int>& a, int n) {

 ntt(a, n,

Exponentiation<int>::getInstance().BinaryExponentiation(ROOT, MOD - 2,

MOD));

 int inv_n =

Exponentiation<int>::getInstance().BinaryExponentiation(n, MOD - 2,

MOD);

 for (int i = 0; i < n; ++i) {

 a[i] = 1LL * a[i] * inv_n % MOD;

 }

 return;

}

Polynomial NumberTheoreticTransform::multiply(Polynomial a, Polynomial

b) {

 int n = 1;

 while (n < a.getDegree() + b.getDegree() + 1) {

 n <<= 1;

 }

 a.getCoefficients().resize(n);

 b.getCoefficients().resize(n);

 NumberTheoreticTransform::ntt(a.getCoefficients(), n, ROOT);

 NumberTheoreticTransform::ntt(b.getCoefficients(), n, ROOT);

 vector<int> c(n);

 for (int i = 0; i < n; ++i) {

 c[i] = 1LL * a.getCoefficients()[i] * b.getCoefficients()[i] %

MOD;

 }

 NumberTheoreticTransform::ntt_inverse(c, n);

 Polynomial res(n-2);

 res.setCoefficients(c);

 res.reduceDegree(m);

 res.reducePolynom(m);

 return res;

}
Fig 5.5. Number Theoretic Transform Implementation

 As you can see the procedure reduceDegree() and
reducePolynom() are called after each NTT multiplication. This
way every resulting polynomial is minimized degree wise and
the next NTT will be significantly faster. Finally to piece
everything together, there is a Solver object that utilizes all the
algorithms above to calculate the answer like the simplified form
we discovered before.

int Solver::Calculate(int N, int M, int R){

 if (R==0){

 R = M;

 }

 NumberTheoreticTransform::getInstance().setM(M);

 int C = Exponentiation<int>::getInstance().BinaryExponentiation(2,

N, MOD);

 Polynomial result(M-1);

 Polynomial temp(0);

 Polynomial expo(M-1);

 temp.getCoefficients()[0] = 1;

 temp.getCoefficients().push_back(1);

 expo =

Exponentiation<Polynomial>::getInstance().BinaryExponentiation(temp,

N);

 for (int j=0; j<M; j++){

 result.getCoefficients()[(j + M - R) % M] +=

expo.getCoefficients()[j];

 }

 for (int i=2; i<M; i++){

 temp.getCoefficients().push_back(1);

 temp.getCoefficients()[i-1] = 0;

 expo =

Exponentiation<Polynomial>::getInstance().BinaryExponentiation(temp,

N);

 for (int j=0; j<M; j++){

 result.getCoefficients()[(j + (i * (M-R))) % M] +=

expo.getCoefficients()[j];

 }

 }

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

 result.getCoefficients()[0] = (C + result.getCoefficients()[0]) %

MOD;

 result.reducePolynom(M);

 // Theoretically only X_0 persists, if so Divide by M, otherwise

report possible error

 int k = 1;

 while (k < M && result.getCoefficients()[k] == 0){

 k++;

 }

 int answer = result.getCoefficients()[0];

 answer = (answer * Exponentiation<int>::getInstance().inverse(M,

MOD)) % MOD;

 if (k == M){

 // Show Answer, as a positive

 return answer;

 } else {

 // Report, as a negative

 return answer * -1;

 }

}
Fig 5.6. Answer Calculation Implementation

 To calculate S(R), the multiplication with 𝜔(𝑀−𝑅)𝑘 is
handled with indexing [(j + (i * (M-R))) % M] which exploits
the cyclic nature of powers with ω𝑀 = 1. Pay attention to the
final reducePolynom() call. At that point we are at the final
calculated polynomial. Theoretically, every coefficient of ω at
that polynomial will be equal. Thus, we can reduce it one last
time and ended up with a single integer, which divided by M is
our answer. But in reality, sometimes the coefficient are not all
equal, which gives doubt to the final answer since a root of unity
persists in the answer while it’s a complex number. This is why
the writer notifies the user of a probably miscalculation if such
thing happens.

 Finally we must make sure that the division by M is correct
under modulo. By Fermat’s little Theorem, we have

𝑀−1 ≡ 𝑀𝑝−2 𝑚𝑜𝑑 𝑝

This is why choosing 998244353 as our modulus gave an
advantage. Since selecting composite modulus complicates us
by needing Chinese Remainder Theorem to calculate inverse. In
the above code, the inverse is just

3998244351𝑚𝑜𝑑 998244353

Which can be calculated in O(log n) time using Binary
Exponentiation.

VI. ANALYSIS

The program runs pretty quick with ability to calculate up to
N = 100000. Above that the programs seems to run out of
memory and thus cannot continue the calculation. For N=10000,
by average the solution found in about a minute. Based on the
algorithms time complexity, the total complexity of the program
should be 𝑂(𝑚2𝑙𝑜𝑔𝑚 𝑙𝑜𝑔𝑛). Which isn’t quite reflected by the
reality. Truth is, the program could be way slower do to the
heavy computations of the modulo.

The main problem of the program currently is the low of
accuracy. The case where root coefficient not equal is highly
probably. The program also works very well for small N but
once it reaches the thousands it tends to gave a wrong answer
even when no indication reported. One such case is for

∑ (
1000

3𝑘
)

𝑘≥0

Where in the reference mentioned before the solution

is
21000−1

3
 which should’ve been 7742092 in modulo 998244353.

Yet the program returns 965982950

Fig 6.1. Classical Test Case

This is far from the solution and instead was closer to the modulo
998244353 instead. There’s a high probability that an integer
overflow happened and not handled yet, which explains most of
the error.

VII. CONCLUSION

In conclusion, the program written by the author is not
perfect. There is still a huge room for improvement on the
implementation side. But, it still proves that the problem can be
generalized using Number Theoretic Transform and Binary
Exponentiation. Plus, utilizing roots of unity a simpler form can
be achieved. Anyway, the author is still grateful of the
knowledge achieved while working on this paper.

ACKNOWLEDGMENT

The writer would like to thank first of all, to God for

giving me all ability and chance to finish this paper. I also

would like to express our sincere gratitude to Dr. Ir. Rinaldi

Munir, M.T. for his guidance throughout the development of

this paper and the teachings as my Strategy & Algorithms

Makalah IF2211 Strategi Algoritma, Semester II Tahun 2023/2024

lecturer throughout this semester. I am also grateful to Institut

Teknologi Bandung for providing the computational resources

necessary and giving the writer a chance to finish his second

paper. Appreciation also extends to the community of Math

Olympiad participants and enthusiast since they are the reason

why the problem discussed here are known. Lastly, I thank my

family, friends, and everyone providing support while writing

this paper

REFERENCES

[1] E. Chen, "Summation", evanchen.cc, October 13, 2023. [Online].
Available: https://web.evanchen.cc/handouts/Summation/Summation.pdf

[2] R. Li, "Roots of Unity," Contest Lectures, Department of Computer
Science, Stanford University, Stanford, CA, [Online]. Available:
https://cs.stanford.edu/~rayyli/static/contest/lectures/Ray%20Li%20root
sofunity.pdf

[3] A. Kotelnikov, "The Vandermonde Determinant: A Novel Proof,"
Towards Data Science, March 24, 2021. [Online]. Available:
https://towardsdatascience.com/the-vandermonde-determinant-a-novel-
proof-851d107bd728

[4] J. Kogler, "Binary Exponentiation", cp-algorithms, September 12, 2023.
[Online]. Available: https://cp-algorithms.com/algebra/binary-exp.html

[5] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, 4th ed. Cambridge, MA: MIT Press, 2022.

PERNYATAAN

Dengan ini saya menyatakan bahwa makalah yang saya tulis ini

adalah tulisan saya sendiri, bukan saduran, atau terjemahan dari

makalah orang lain, dan bukan plagiasi.

Bandung, 12 Juni 2024

Farhan Nafis Rayhan - 13522037

https://web.evanchen.cc/handouts/Summation/Summation.pdf
https://cs.stanford.edu/~rayyli/static/contest/lectures/Ray%20Li%20rootsofunity.pdf
https://cs.stanford.edu/~rayyli/static/contest/lectures/Ray%20Li%20rootsofunity.pdf
https://towardsdatascience.com/the-vandermonde-determinant-a-novel-proof-851d107bd728
https://towardsdatascience.com/the-vandermonde-determinant-a-novel-proof-851d107bd728
https://cp-algorithms.com/algebra/binary-exp.html

